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Abstract—A general perturbation theory for the branching analysis of discrete conservative structural systems
is presented. Such systems are best analysed without resort to a scheme of diagonalization, and the absence of
such a scheme distinguishes the present development from earlier studies. The tensor notation and the system of
sliding axes employed in earlier studies are however of considerable analytical value and are therefore retained.
The theory is presented for both a general and a specialized class of system and some general features of the
perturbation scheme are established. The application of the general theory to two branching problems is finally
outlined and its merits discussed.

1. INTRODUCTION

THE continuum studies of Koiter, Budiansky and Hutchinson and others [1-19] have
amply demonstrated the value of branching analyses of initial post-buckling, and it is a
corresponding general theory for the branching analysis of discrete structural systems—
generated for example by the finite-element Rayleigh—Ritz procedure— that is presented
here. Such discrete systems are best analysed without resort to a scheme of diagonalization,
and it is the absence of such a scheme that distinguishes the present development from the
carlier study of Thompson [20] which was primarily designed to illustrate the various
branching phenomena. The tensor notation and the system of sliding axes employed in
this earlier study are however of considerable analytical value and have been retained.

The application of the general theory to two branching problems is finally outlined and
its merits discussed, the two analyses being more fully described in two companion papers
[21, 22].

2. THEORY FOR THE GENERAL SYSTEM

Following earlier studies [20, 23-27], we consider a conservative structural system
described by the total potential energy function V(Q;, A), where Q; represents a set of n
generalized coordinates and A is a loading parameter.

We suppose that in the region of interest the n equilibrium equations V. = 0 yield a
single-valued fundamental solution Q; = Qf(A), a subscript on V denoting partial differ-
entiation with respect to the corresponding generalized coordinate. A sliding set of
incremental coordinates g; is then defined by the n equations

Qi = Qi(N)+q;, 1 .
and we introduce the new energy function [20]
Wigi, Al = V[Qi{(A)+g;, A]. 2

281



282 J. M. T. TuompsoN and A. C. WALKER

The normal equilibrium and stability conditions hold good for this transformed energy
function which has the properties

W0, A] =0,

W0, A] = 0,

Wi[0,A] = 0, (3)
ete.,

a subscript again denoting partial differentiation with respect to the corresponding
generalized coordinate and a prime denoting partial differentiation with respect to A. We
see that we have a valid mapping from the original A —Q; space to the new A—g; space
in which the fundamental equilibrium path is given by g; = 0.

Supposing now that a discrete critical point C lies on the fundamental equilibrium path
at A = A€, the determinant of Wj; will vanish at this point so we can write

[W0, A9 = 0. (4)

We now seek to express any post-buckling equilibrium path emerging from this critical
equilibrium state in the parametric form [20, 24]

q; = Qj(‘h), A = Alg,), (5)

assuming without any essential loss of generality that the first generalized coordinate is a
suitable expansion parameter. Here as elsewhere in the paper it is convenient to write ¢,

as q,(q,)-
These parametric equations can be substituted into the equilibrium equations W, = 0

to give the identity
Wilqiq,), Ag,)] = 0. (6)

Here the left-hand side is simply a function of the independent variable g, so we can
differentiate the equations with respect to g, as many times as we please. Thus differentiating
once, twice, and three times we can generate the ordered equilibrium equations

Wian+WiA, =0, (7
(Widin + WiA D + Wigjn +(Wigjn + WIADA + WiA, = 0. ®)
{Wadir + Wi D + Wi 1 + Wi + WHA DA+ WEA Vg,
+Winger + WiA g1+ (Wipdir + WA G100+ Wiidin0
H{Winaa + Wik + Wigi +(Wigin + WIADA + WA A,
+(Wian +WIADA L +(Wigj + WIADA L+ WA = 0. 9)

Here a subscript one denotes differentiation with respect to q,, and following the earlier
scheme we must remember that

(10)
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The dummy-suffix summation convention is employed with all summations ranging from
1 to n.
Evaluating the ordered equilibrium equations at the critical point g¢; = 0, A = A€, and
remembering that W€ = W/ = 0 we have
Wi jIIC =0 }

(11
Wi qi +2Wig A+ Wiﬂjxﬂc =0,
etc. .
Since ¢,, = 1 and assuming as before that g, is a suitable independent variable, we
can now solve the first equilibrium equation for the rates g5, where s # 1.

Multiplying the ith equation of the second set by ¢, and adding the n equations we have
Wirdi19;1911 +2Wigind i A + Wiana5 €=0, 12)

and observing that the last term vanishes by virtue of the first-order equilibrium equation

we find

_VVijkqilqjlqkl C' (13)
2Wigi4q5

Here we have assumed that the critical equilibrium state is simple in the sense that the

expression Wig,14;,|, which clearly plays a key role in the analysis, is non-zero.

We see that this latter manipulation has given us the slope A{ in terms of the rates g5;
the second derivatives g5, having been eliminated. We can thus write the general result:

The slope of the post-buckling path passing through a simple discrete critical point on a
plot of the loading parameter against a (suitable) generalized coordinate is not dependent on
the solution of the second-order equilibrium equations.

A consequence of this result is that a one-degree-of-freedom non-linear Rayleigh—Ritz
analysis employing the linear buckling mode will yield the correct value for this slope [28].

Returning to the analysis, knowing A§ and remembering that ¢q,,, = 0, we can now
solve the second-order equilibrium equations for the second derivatives g%, (s # 1) if
more information is required.

This sequence can now be repeated as many times as we please. Thus multiplying the
third-order equilibrium equation by ¢¢; and adding we can now find A, without having
to solve these equations for ¢$;,,. We can thus write the general result:

For the post-buckling path passing through a simple discrete critical point the mth derivative
of the loading parameter with respect to a (suitable) generalized coordinate is not dependent on
the solution of the (m+ )th-order equilibrium equations.

The work so far is applicable whether or not the slope A is zero. When A is non-zero
we have the previously discussed asymmetric point of bifurcation {20], and we shall now set
A§ = 0 to study the symmetric points of bifurcation in more detail.

Thus with A{ = 0, the third-order equilibrium equation evaluated at the critical point
can be written, after multiplying by g5 and summing, as

AS =

Wiadi1919619i1 + 3Wiiadi1919x01 + 3Wigin g0 A + Wiﬂn‘ljuﬁc = 0. (14)
As before the last term vanishes by virtue of the first-order equilibrium equation, and with
our previous assumption that Wi, q;,|° # 0 we can now write the path curvature as

A€, = Woadi1919x1 91 + 3Wiindin 1911 | ©
1M1= .

; (15)
3Wijqi1qj1
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3. THEORY FOR THE SPECIALIZED SYSTEM

We shall now consider an important specialization of the preceding general theory
which can be made when the original total potential energy function V(Q,, A) is linear in
the loading parameter A.

When this linearity holds we shall, for purely semantic reasons, replace A by P and
then write

V(Q:, P) = U(Q)—P&(Q). (16)

Here the function U(Q,) can be regarded as a generalized strain energy, while P can be
regarded as the magnitude of a generalized force acting through the generalized displace-
ment (Q)).

The general theory of Section 2 is of course applicable whether or not this linearity
holds, and it remains to examine the post-buckling response of the specialized system on
a plot of the load P against its corresponding deflection £(Q;).

The energy transformation of the general theory can first be written out in full as follows:

Wig:, P) = V[Qi(P)+q; P]

= U[Q{(P)+4q))— PELQI(P)+4q.), (17)
and some required derivatives of W can be written down,
W, = U,— P&,
W, = Uy—Pé&;,
J J J (18)

W' = UQi —6-P&OT,
W} = Uiij’—gj—P(g)iij"

Now Wi = 0, so we have
&5 = (Uy—P&)Q7 |
J J e J (19)
= VVijQi |
and multiplying by 45, and adding we find
(ngjlic = VVile{:,qjllc' (20)

But the right-hand side of this last equation is zero by virtue of the first-order equilibrium
equations, so we have the important result that

éz}‘]jﬂc = 0. (21)
We consider now the change in the corresponding deflection defined by the equation
elq;, P) = 8[Qf(P)+q;]—&1Qf(P)), (22)

and we write down some required derivatives as follows:
e, =& e;; = &;
¢ = 80N ~60F  ¢€=0
" = &,070F +601 - 6,07 0f —&0"

c _ ‘o F’
el/ - 0 ej - gijk .

(23)
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The total variation of e with ¢, along the post-buckling equilibrium path is

elq,) = elqfq,), Plgy)ls (24)
giving on differentiation
de )
42 (25)
e 4 7 ’
d—cﬁ = (eugu1 +€;P)g; +egji +(ejq; +e'P )Py +e'Pyy,
so using the earlier results we have
d i
de € _
dg,
d2elC (26}
e .
Eq_f = &udj19k +2P1<§ijf g1 +£}CI}11'C-

For the asymmetric point of bifurcation in which P§ # 0 the total post-buckling
variation of e with P is well-behaved and we can write

elq,) = e[P(q,)] (27)
so that
de _ de
dg, dP'! (28)
d?¢ d% _, de
a ~aprt it aph

We thus obtain the required results

de ¢

—| =0, 29

ip (29)
d_zei ¢ _ S +2P 60k 5+ 650 C‘ (30)
dp? P? |

For the symmetric point of bifurcation in which P§ = 0 the total post-buckling varia-
tion of ¢ with P is associated with a singularity but we can write

Ae _ Yd%e/dadai+ - .

3
AP P+ ... (31)
to obtain the limiting slope
I
APl P,
_ Eind 19k ‘}‘(gj%nic. (32)

Py J
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4. APPLICATIONS

The general theory has been applied to two branching problems, each of which repre-
sents an example of the specialized system of Section 3. The first is the rotationally-symmetric
branching of a complete spherical shell under uniform external pressure which yields an
asymmetric point of bifurcation from the trivial fundamental path associated with the
uniform contraction of the shell. The second is the branching of a centrally-loaded arch
which deforms symmetrically to give a non-linear fundamental equilibrium path from
which non-symmetric deformations can develop at an unstable-symmetric point of bifurca-
tion.

The spherical shell was analysed first by expanding the deflected form in Legendre
functions following the classical buckling analyses. This expansion diagonalizes the basic
matrix W¢; so a direct solution of the successive linear equilibrium equations was possible.
The required Legendre integrals were expressed as finite series, so essentially exact expres-
sions for the path derivatives could be obtained by summing these series on a computer.
The first three path derivatives were obtained in this way, the first derivative agreeing with
that of Thompson [5].

The same problem was then studied using the finite-element Rayleigh—Ritz procedure
[29, 30 and 31]. Third-order polynomials were used to construct the form of the lateral
deflection which was thus continuous in displacement and first derivative while admitting
discontinuities in its second and higher derivatives at the stations. In contrast the in-plane
tangential displacement was taken to be linear between the stations at which discontinuities
in the first derivative were thus admitted. With this assumed form the basic matrix W¢;
was of course not diagonal, and the general theory was employed, the successive sets of
linear equations being solved on a computer. The first three path derivatives were again
calculated and were observed to converge rapidly and monotonically to those of the first
analysis as the number of stations was increased.

The pinned circular arch under a point load at its centre differs from the spherical shell
in having a non-linear fundamental equilibrium path which must be located before the
branching analysis can be made. The arch was analysed using the finite-element Rayleigh—
Ritz procedure and the fundamental path was determined using a perturbation technique
[27] in conjunction with the Newton—Raphson procedure. The vanishing of the stability
determinant on the fundamental path before the occurrence of a limit point served to
locate the required branching point, and the first- and second-order branching equations
were then solved using a digital computer. The specialized theory of Section 3 was then
used to obtain the limiting post-buckling slope on a plot of the load against its corresponding
deflection, namely the central deflection of the arch.

The analyses of the shell and arch are presented more fully in two companion papers
[21,22].

5. DISCUSSION AND CONCLUSIONS

The analytical advantages of a perturbation approach to problems of elastic post-
buckling are well known, the initial non-linear problem being reduced to a sequence of
non-singular linear problems. Such a branching study has a further intrinsic advantage
in that it may pin-point significant local behaviour which can be missed in a more-coarse
large-deflection analysis, this point being well illustrated by the work of Hutchinson on the
initial post-buckling of oval cylindrical shells under axial compression [16].
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Once a perturbation branching approach has been adopted for the analysis of a discrete
structural system it is felt, in the light of the two specific analyses, that the present general
theory is of great and immediate value since the summations of the theory are readily made
on a digital computer.
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Abcrpakt—IIpencrapnserca ofwas TeOpUs BO3MYLUEHHA QU1 AQHANM32 DPA3BETBJICHUS IHCKPETHBIX
KOHCEPBATHBHBIX CHCTEM KOHCTPYKLMIt. CHCTEMBI 3TOTO pola Jy4llie BCEro aHANIM3MPoBaTh Oe3 nmoMolum
cxeMbl auaroHanuiauuu. OTCYCTBHE TaKOM CXeMbl OTJIMYAET COBPEMEHHBIE BLIBOABLI OT NpeaHayLuMx
uccneaoBanuii. TeH3OPHBIH 3amMC M CHCTEMA NEPEIBUIAIOLIUXCH OCEi, MCMOJIb3yeMble B INpeavAYLIHMX
UCCIEIOBAHUAX, UMEIOT TAKXKE M B HACTOsIEE BpeMsl BAXHOE 3HAYECHHE, M MO3TOMY OHM COXPAHAIOTCA.
Tlpeacrapasiercs Teopus Kak Ans obulero kiacca CHCTEM, Tak M JUIA cneunansHbix. [lpennmararorcs
HEKOTOpBIE BHIBI CXEM BO3MylUEHMs. JlaeTcs OKOHYATENBHO MCHONB30BaHME obuleit Teopuu ABYX 3azau
pa3BeTBICHHA U O6CYKAAIOTCA MX JOCTOMHCTBA.



